博客
关于我
【信号处理】之信号FFT、卷积滤波、相关
阅读量:801 次
发布时间:2019-03-25

本文共 870 字,大约阅读时间需要 2 分钟。

1. FFT(快速傅里叶变换)

FFT(快速傅里叶变换)是离散傅里叶变换(DFT)的高效算法,将信号从时域转换到频域。许多信号在时域难以显现特征,但经过FFT后频域分析却异常直观。这也是FFT在信号分析中广泛应用的主要原因。

FFT的核心物理意义在于:模拟信号经过采样后被转换为离散信号。根据采样定理,采样频率需高于信号频率的两倍。这样,数字信号才能便于进行FFT变换。为了确保FFT计算的效率,采样点数通常取2的整数次方。

具体而言,设采样频率为Fs,信号频率为F,采样点数为N。FFT后的结果是N个复数点。第n个点的特性包括:

  • 模值:√(a² + b²)
  • 频率:(n-1)Fs/N
  • 幅度:模值/(N/2)
  • 相位:b/a(须转换为角度单位)

对于原始信号的峰值A,FFT结果中除直流分量外,每个点的模值均为A×(N/2)。

傅里叶公式

离散信号x(n)的DFT定义为:

\[X(k) = \sum_{n=0}^{N-1} x(n) \cdot e^{-j2\pi kn/N}\]

傅里叶变换可以分解为偶序列和奇序列的和。将信号分解为x1(n)(偶序列)和x2(n)(奇序列),分别计算它们的DFT结果X1(k)和X2(k)。利用DFT的性质可得:

\[X(k) = X1(k) + jX2(k)\]

原理

FFT是一种在O(N log N)时间内完成DFT的算法,是信号分析中的工作 horse。其核心原理在于利用复数单位根和分治策略,将DFT问题递归分解和合并,最终显著降低计算复杂度。

2. 信号滤波

卷积的理解

卷积是信号处理中的基本操作。简单来说,卷积是对两个信号进行逐点乘积积分,反映信号之间的叠加效果。不同滤波器类型(如低通、高通、带通等)在卷积中起到不同作用。

3. 相关

相关衡量信号之间的相互作用强度。常用于分析信号之间的协调性或干扰程度。通过相关可以理解不同信号的波动是否同步或独立。

总结

FFT、信号滤波和相关技术是信号处理的核心工具,广泛应用于多个领域。理解这些技术的物理意义和算法原理是掌握现代信号分析的关键。

转载地址:http://rtiyk.baihongyu.com/

你可能感兴趣的文章
Mysql学习总结(38)——21条MySql性能优化经验
查看>>
Mysql学习总结(39)——49条MySql语句优化技巧
查看>>
Mysql学习总结(3)——MySql语句大全:创建、授权、查询、修改等
查看>>
Mysql学习总结(40)——MySql之Select用法汇总
查看>>
Mysql学习总结(41)——MySql数据库基本语句再体会
查看>>
Mysql学习总结(42)——MySql常用脚本大全
查看>>
Mysql学习总结(43)——MySQL主从复制详细配置
查看>>
Mysql学习总结(44)——Linux下如何实现mysql数据库每天自动备份定时备份
查看>>
Mysql学习总结(45)——Mysql视图和事务
查看>>
Mysql学习总结(46)——8种常被忽视的SQL错误用法
查看>>
war包放到webapps下,启动tomcat,tomcat正常,却无法加载项目
查看>>
Mysql学习总结(48)——MySql的日志与备份还原
查看>>
Mysql学习总结(49)——从开发规范、选型、拆分到减压
查看>>
Mysql学习总结(4)——MySql基础知识、存储引擎与常用数据类型
查看>>
Mysql学习总结(50)——Oracle,mysql和SQL Server的区别
查看>>
Mysql学习总结(51)——Linux主机Mysql数据库自动备份
查看>>
Mysql学习总结(52)——最全面的MySQL 索引详解
查看>>
Mysql学习总结(53)——使用MySql开发的Java开发者规范
查看>>
Mysql学习总结(54)——MySQL 集群常用的几种高可用架构方案
查看>>
Mysql学习总结(55)——MySQL 语句大全再温习
查看>>